Fizyka
(z stgr. φύσις physis – "natura")
– nauka o przyrodzie w najszerszym znaczeniu tego słowa. Fizycy badają właściwości i przemiany materii i energii oraz oddziaływanie między nimi. Do opisu zjawisk fizycznych używają wielkości fizycznych, wyrażonych za pomocą pojęć matematycznych, takich jak liczba, wektor, tensor. Tworząc hipotezy i teorie fizyki, budują relacje pomiędzy wielkościami fizycznymi.
Fizyka jest ściśle związana z innymi naukami przyrodniczymi, szczególnie z chemią jako nauką o cząsteczkach i związkach chemicznych, które masowo występują w naszym otoczeniu. Chemicy przyjmują teorie fizyki dotyczące cząsteczek i związków chemicznych (mechanika kwantowa, termodynamika) i za ich pomocą tworzą teorie w ich własnych dziedzinach badań. Fizyka zajmuje szczególne miejsce w naukach przyrodniczych, ponieważ wyjaśnia podstawowe zależności obowiązujące w przyrodzie.
Przegląd fizyki
Fizyka eksperymentalna a teoretyczna
Kultura badań fizycznych różni się od innych nauk tym, że istnieje w niej fundamentalny i powszechnie uznawany podział na teorię i doświadczenie. Od początku XX wieku większość fizyków pozostaje specjalistami albo w fizyce teoretycznej, albo w fizyce doświadczalnej. Zaskakująco mało fizyków odnosi sukcesy w obu rodzajach badań. Dla porównania, większość wybitnych teoretyków chemii i biologii z powodzeniem pracuje też eksperymentalnie.
Mówiąc ogólnie, praca fizyków-teoretyków polega na rozwijaniu teorii, za pomocą których można opisać i interpretować wyniki doświadczeń oraz możliwie dokładnie przewidzieć wyniki przyszłych doświadczeń. Z drugiej strony, fizycy doświadczalni wykonują eksperymenty, żeby zbadać nowe zjawiska i sprawdzić przewidywania teoretyczne. Ważną częścią pracy fizyka doświadczalnego jest też często budowanie własnej aparatury, szczególnie w pionierskich lub wysoce ezoterycznych gałęziach fizyki, gdzie potrzebny sprzęt jest niedostępny komercyjnie. Mimo że teoretyczne i doświadczalne części fizyki są rozwijane w dużym odosobnieniu, są ze sobą ściśle powiązane i od siebie zależne. Postęp w fizyce teoretycznej często zaczyna się od doświadczeń, których nie potrafi uwzględnić – i na odwrót, nowatorskie przewidywania teoretyczne często przynoszą nowe pomysły doświadczalne. Gdy dla danego zagadnienia brakuje jednej z części, drugie z łatwością błądzi. Taki jest jeden z argumentów krytycznych przeciw M-teorii, popularnej teorii w fizyce wysokich energii, dla której nie wymyślono jeszcze żadnego testu eksperymentalnego.
Centralnym elementem eksperymentu jest pomiar dobrze określonej wielkości fizycznej, a warunkiem niezbędnym uzyskania z niego wartościowych informacji prawidłowy dobór przyrządów pomiarowych oraz metod analizy otrzymanych danych. Obróbka danych często opiera się na statystyce, regułach prawdopodobieństwa oraz odpowiednich metodach numerycznych.
Podobnie fizyka teoretyczna ma własny zestaw metod naukowych, które pozwalają stworzyć adekwatne modele i paradygmaty. Opracowane teorie zazwyczaj korzystają z różnych metod matematyki, analitycznych i syntetycznych. Kluczową rolę w rozważaniach teoretycznych odgrywają hipotezy i proces dedukcji.
Główne teorie
W fizyce część teorii jest uznana przez wszystkich fizyków. Każdą z tych teorii uważa się za fundamentalnie prawdziwą w określonym dla niej zakresie. Na przykład, mechanika klasyczna precyzyjnie opisuje ruch ciała atomów i poruszają się z prędkościami dużo mniejszymi niż prędkość światła. Niektóre teorie, są nadal obszarami badań – zaskakujący aspekt mechaniki klasycznej znany jako chaos przebadano w XX wieku, trzysta lat po jego sformułowaniu przez Newtona wprowadzając mechanikę statystyczną.
Działy szczegółowe fizyki
Współczesne badania fizyczne można podzielić na kilka wyraźnych działów, które zajmują się różnymi aspektami świata materialnego. Fizyka fazy skondensowanej, bodaj największa dziedzina fizyki, dotyczy własności materii i jej związków z własnościami i oddziaływaniami atomów, z których się składa. Fizyka atomów, cząsteczek i zjawisk optycznych opisuje pojedyncze atomy i cząsteczki oraz ich oddziaływania ze światłem. Fizyka cząstek elementarnych (znana też jako fizyka wysokich energii) z kolei bada cząstki submikroskopowe mniejsze od atomów i poszukuje elementarnych cząstek budujących wszystkie inne jednostki materii. Astrofizyka wykorzystuje prawa fizyki, żeby tłumaczyć zjawiska astronomiczne, na przykład zjawiska związane ze Słońcem, Układem Słonecznym oraz Wszechświatem jako całością.
Działy fizyki są ze sobą ściśle powiązane i zasięg stosowania teorii i modeli często wykracza poza prosty podział zaprezentowany powyżej. Przykładowo fizyka materii skondensowanej zajmująca się układami silnie skorelowanych fermionów jest stosowana do efektów obserwowanych w gwiazdach neutronowych, które są podstawową domeną astronomii. Wynika to stąd, że fizyka jako nauka jest spójna i poszczególne modele i teorie opracowywane w poszczególnych działach mają te same podstawy oraz mogą mieć zastosowanie w innych działach. Podstawowe teorie, takie jak mechanika kwantowa, kwantowa teoria pola, elektrodynamika kwantowa, teoria grawitacji, są sformułowane w sposób ogólny i obowiązują w całej fizyce.
Działy interdyscyplinarne i pokrewne
Wiele badań łączy fizykę z innym dziedzinami nauki. Dla przykładu, szeroki zakres biofizyki obejmuje wszystkie zagadnienia dotyczące układów biologicznych, w których stosuje się zasady fizyki. W chemii kwantowej z kolei opisuje się i przewiduje zachowania atomów i molekuł na podstawie teorii mechaniki kwantowej.
Ważne prawa
Dobrze sprecyzowane i powszechnie przyjęte teorie są przedstawiane jako prawa fizyki. Chociaż wszystkie naukowe teorie są w zasadzie tymczasowe i obowiązują tylko w pewnym zakresie, prawa fizyczne zostały wielokrotnie sprawdzone, a ich zakres stosowalności dobrze określony.
Ważne równania
Wiele praw fizycznych może być opisana za pomocą relacji odpowiednich wielkości. Zapis matematyczny takich relacji nazywa się równaniem.
Historia fizyki
Chwila, od której człowiek zaczął interesować się poznawaniem przyrody, jest trudna do określenia. Najdawniejsze ślady kultur sprzed 5000 lat znalezione w dolinach Nilu, Eufratu i Tygrysu, świadczą o prymitywnych próbach wykorzystania natury. Jednak z czasem na podstawie obserwacji ludzkość posiadła sztukę wytwarzania narzędzi, uprawy pól, wytopu metali i sztukę liczenia. Poprzez obserwację powtarzalności zjawisk stworzono kalendarz.
W starożytności fizyka była traktowana jako część filozofii. Arystoteles dokonał podziału filozofii na fizykę – dział traktujący o zjawiskach przyrodniczych i metafizykę (ontologię i epistemologię, czyli nauki dotyczące samej istoty bytu i możliwości jego poznania) oraz etykę i logikę. Fizyka aż do XVI w. uprawiana była, podobnie jak pozostałe działy filozofii, głównie poprzez rozważania teoretyczne. Dopiero od czasów Kopernika zaczęła wzrastać rola pomiaru i doświadczenia w poznaniu rzeczywistości i fizyka zaczęła wyrastać na niezależną naukę ze specyficznym dla siebie aparatem pojęciowym i metodami badawczymi. Reliktem pozostałym po filozoficznej genezie fizyki jest termin filozofia naturalna w języku angielskim będący jeszcze często synonimem fizyki (w Oxfordzie nadaje się tytuły naukowe nie z fizyki, tylko z filozofii naturalnej).
Obecny zakres zainteresowania fizyki ukształtował się w XIX i na początku XX wieku, również wówczas zarysował się podstawowy podział fizyki na klasyczne działy: mechanikę, optykę, naukę o cieple, elektryczność i magnetyzm. Fizyka odkrywając nowe zjawiska, opisując je, tworząc teorie pozwalające przewidywać nowe efekty, stała się motorem napędowym gwałtownego rozwoju techniki i doprowadziła do rewolucyjnych zmian cywilizacyjnych. Proces ten trwa do dzisiaj ulegając, co więcej ulega ciągłej akceleracji.
Zapraszamy do zapisania się na nasz newsletter!
Brak komentarzy:
Prześlij komentarz